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Abstract. By introducing a flow pattern weighted average temperature as a reference 
temperature in a gaseous thermal diffusion column, a simplified formulation for the relevant 
steady quantities-the maximum separation factor and the optimum pressure-is obtained. 
This formulation describes within a few per cent all the cases which present in common 
separation practice and allows us to determine thermal diffusion factors from column 
steady measurements. 

1. Introduction 

According to the theory of Furry, Jones and Onsager (FJO; Furry et a1 1939, Jones 
and Furry 1946) which describes the behaviour of a gaseous thermal diffusion column, 
the steady state is determined by two quantities: the maximum separation factor and 
the pressure at which it occurs, the so-called optimum pressure. These quantities 
depend in a complicated way on the geometrical characteristics of the column, the 
operation wall temperatures and the mixture’s physical properties as well as their 
temperature dependences. These dependences are, in most cases, rather complex and 
numerical calculations are then needed. 

Several attempts (Saxena and Raman 1962, Slieker 1965) have been made to 
obtain a simplified formulation of the column operation. In this respect, recent 
numerical results (Saviron et a1 1971) indicate that the choice of a suitable mean 
temperature as reference te.mperature for the relevant physical properties could greatly 
reduce the standard FJO results. 

That simplified formulation is required in many respects. In the design of separation 
installations, in particular, it would be desirable to have explicit expressions which 
allow the determination of the steady behaviour of a separation unit without recourse 
to numerical calculations. On the other hand, because of the relatively large separ- 
ations, the column can be used advantageously to determine thermal diffusion factors 
of isotopic and non-isotopic gaseous mixtures. In this respect one of the difficulties 
reported in the literature (Rutherford 1970, Saviron et a1 1971) is the involved way 
in which the thermal diffusion factor appears in the FJO formulation which makes it 
difficult to assign temperature to the measured values. Although numerical computa- 
tions indicate that the maximum separation factor is proportional to the thermal 
diffusion factor evaluated at some mean temperature, it is important to have an explicit 
expression relating these two quantities. 
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The purpose of this paper is to present simple and accurate expressions for the 
maximum separation factor and the optimum pressure. We shall start from the FJO 
standard equations and after introducing the adequate reference temperature we shall 
obtain a formulation in which the influence of the gas nature appears only through 
the gas properties evaluated at the reference temperature. 

The obtained results allow a precise enough description of the column operation 
in common separation practice and can also be used in the evaluation of gaseous 
thermal diffusion factors from column measurements. 

2. Theory 

According to the FJO theory (Furry et a1 1939, Jones and Furry 1946) the steady 
maximum separation factor, Q*, and the corresponding optimum pressure, P*, in a 
gaseous thermal diffusion column are given by 

In Q* = HL/2(KcKd)lf2 P*/P = (Kd/Kc)lI4. (1) 

Here P is the pressure, L is the length of the column and H,  K, and Kd are the 
so-called column constants defined by 

=2 

Kd = 2rr r2pDA d T  
Qi T~ 

where T1 and T2 are, respectively, the temperatures at the cold and hot walls, r is 
the radial coordinate; cy is the thermal diffusion factor, A is the conductivity coefficient, 
D is the ordinary diffusion coefficient, p is the density and 2mQ1 is the radial heat 
flux per unit length. This quantity and the temperature distribution in the column 
are given by the heat conduction equations 

12 r 7-1 

Q1 In - = IT, A d T  Ql ln ;=jT A d T  
11 

(3) 

where rl and r2 are, respectively, the outer and inner cylinder radii. Finally, G ( T )  is 
related to the mass circulation rate in the column and is given by the solution of the 
hydrodynamic equation 

d 1 d T d  1 d G  - dp 
d T  r 2 A  d T  A d T  r 2 p A  d T - - g d T  (4) 

with the boundary conditions 

G(T1) = G(T2) = G’(T1) = G’(T2) = 0 ( 5 )  

where 77 is the viscosity coefficient and G ’  stands for the temperature derivative of 
G(T). As has been recently shown (Navarro et a1 1982), the density composition 
dependence can usually be neglected in (4). 
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By taking the arithmetical mean temperature, = (T1 + T2)/2, as reference tem- 
perature for the gas physical properties in the preceding equations, (1) can be written 
as 

- 
(6) In Q * = - ( y ) q  0418L aAT P* -= 24.54 ( TDT)”’~ 

r1 -r2 P (rl -r2)3/2 pgAT 

where the barred quantities are to be evaluated at F, and p and q are correction 
factors which reduce to unity in the limit T2/T1+ 1, r2/r1 + 1. In the general case 
they depend on the ratios r1/r2, T1/T2 and on the temperature dependence of the 
physical properties relevant in (2)-(5). In terms of the corresponding correction factors 
to H ,  K ,  and Kd-the so-called shape factors h, k, and kd, respectively-the quantities 
q and p are given by 

q = h/(k,kd)’/’ p = (kd/k,)’l4. (7) 
These quantities can be determined by solving (1)-(5). In general, only numerical 
results can be obtained and for several molecular models extensive shape factor tables 
have been reported (McInteer and Reisfeld 1961, Saviron et a1 1965, Greene et a1 
1966). We shall show below that an adequate choice of the reference temperature 
allows us to obtain simple expressions for q and p. 

3. The reference temperature 

We shall take as a reference temperature in a column the average mean temperature 
over the interval TI to T2 defined by 

This temperature will depend on the radii, the wall temperatures and the way in which 
the physical gas properties depend on temperature. An explicit expression for T, may 
be found only for the case of small temperature differences in which these properties 
can be assumed to be constant. We shall first solve this case and then we shall show 
that the derived expression may be used as a good approximation in the general case. 

For constant physical properties, (3)-(5) can be conveniently solved by introducing 
the new variable 

(9) t = 2[(T - Td/(T2 - 7’111 ln(r2/rl) 

Y ( t )  = (T/rlA P Pg)G(T)  

and the auxiliary function 

(10) 

where P is the thermal expansivity. In terms of these quantities, equations (3) yield 
for the temperature distribution 

4 3 2  

r = rl exp(t/2) (11) 
and (4) and ( 5 )  reduce to 

2 d --I d --r dy 
dt dt2 dt -e  -e -- -1 Y (0) = Y” = Y ( t z )  = y’(f2) = 0 
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where t 2  stands for the value of t for T = T2, i.e. f2 = 2 l n ( r 2 / r l ) .  Denoting by r ,  the 
value of t at T = T,, we obtain from (8) 

Introducing the solution of (12) in (13) we get for t ,  after tedious but straightforward 
calculations the following expansion in powers of t2:  

t , = ~ t 2 ( 1 + ~ t 2 - ( 4 x 3 5 2 ) - 1 t :  +. . .). (14) 
This third-order approximation for t ,  agrees to within 1% with the exact values given 
by (13), in all the range of r 1 / r 2  of practical interest ( r 1 / r 2 <  100). 

Substituting (14) in (9) we finally obtain for T, 

The validity of this equation for the case in which the temperature dependence 
of the fluid properties is taken into account can be checked against the numerical 
results derived from (8) for a particular gas model. We have used the Lennard-Jones 
(12-6) model following the numerical procedure described elsewhere (Saviron et a1 
1971). In table 1 are displayed the TJT values so obtained and the corresponding 
approximate ones given by (15) for two typical situations: a concentric type of column 
with r l / r 2  = 2 and a hot wire type with r l / r 2  = 40. The numerical values have been 
calculated for two far-apart reduced temperatures, TT = 0.8 and T? = 30, which cover 
well enough the current ranges of variation with temperature of the gas properties. 
As can be seen, the gas dependence of these values is rather low and they are in 
good agreement with the approximate ones. Therefore (15) can be confidently used 
to determine the temperature T,. 

4. Results and conclusions 

By taking T, as a reference temperature for the physical gas properties, (6) may be 
rewritten 

where the subscript indicates that the affected quantities are to be evaluated at T., 
and 4 .  and p ,  are new correction factors which, respectively, tend to 4 and p and 
therefore to unity for T2/T1 + 1,  r 2 / r 1  + 1 because in this limit T J T +  1. 

Explicit expressions for q. and p s  may be easily derived only for constant physical 
properties. In such a case these quantities depend only on r 2 / r 1  and we shall denote 
them by 40 and p o ,  respectively. As the expressions are complicated we shall omit 
them here for the sake of brevity. Numerical values of qo and p o  are presented in 
table 2 instead. Intermediate values can be determined with an accuracy better than 
1 ‘/o by linear interpolation. 
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Table 1. Exact and approximate values for T,lE 

T.1 i= 

?I112 T21 TI T: =0.8 T: =30 Approx 

2 1.5 
2 
2.5 
3 

40 1.5 
2 
2.5 
3 

0.976 
0.960 
0.948 
0.940 

0.891 
0.820 
0.769 
0.732 

0.975 
0.958 
0.944 
0.932 

0.890 
0.816 
0.765 
0.726 

0.976 
0.961 
0.949 
0.941 

0.890 
0.817 
0.764 
0.725 

Exact values of qs and ps can be obtained for a molecular model from (6), (7), 
(16) and (17) using the corresponding shape factor tables. In this respect we have 
used the inverse power model as well as the Lennard-Jones (12-6) model relying upon 
the shape factors in the literature. 

Table 2. Values of q. and p s  for constant gas properties. 

1 
2 
4 
6 
8 

10 
15 
20 
30 
40 
50 

1 
0.968 
0.887 
0.825 
0.781 
0.746 
0.683 
0.634 
0.591 
0.555 
0.530 

1 
1.025 
1.092 
1.144 
1.184 
1.217 
1.276 
1.319 
1.379 
1.417 
1.447 

Analysis of the values so obtained reveals that, to a good approximation, they fit 

(18) 
In figure 1 we plot the exact q. and ps values against the corresponding approximate 
ones given by (18) for the temperature ratios T2/T1 = 2 and 3. In the case of the 
inverse power model we have considered the ratios of the radii r 1 / r 2  = 5 and 20, the 
dependences a = constant and a X T and the viscosity index n = 0.6 and n = 1. For 
the Lennard-Jones (12-6) model the displayed data correspond to r1/r2 = 2, 10 and 
40 and TT = 0.8, 1.5, 5 and 40. As can be seen (18) gives correct values of qs and 
p s  within deviations smaller than 5 % .  At higher values for T2/T1,  the deviations 
slightly increase, about 6% for T2/T1= 4, and reduce to less than 1% for T2/T1 s 1.5 .  

From this result we can conclude that when the mean temperature given by (15) 
is adopted as a reference temperature, the maximum separation factor and the optimum 

the equations 
- 1 / 4  q s =  ( m s Y 2 q 0  P s  = (Ts/T) Po.  
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Figure 1. Correlation between exact and approximate values of qs and pr. 0 Inverse 
power model. 0 Lennard-Jones (12-6) model. 

pressure are accurately given in all the cases in common practice by the simple 
equations (16), (17) and (18). 

This conclusion is particularly relevant when the column is used to determine 
thermal diffusion factors. In fact the obtained equation for the maximum separation 
factor establishes a proportionality relationship, accurate within 1% for T2/T1 s 1.5, 
between the logarithm of this quantity and the thermal diffusion factor. The fact that 
the proportionality constant appears to be independent of the gas mixture agrees with 
previous numerical results (Saviron et a1 197 1) and gives additional theoretical support 
to the method of relative measurements of thermal diffusion factors (Saviron et al 
1969, 1971). We can mention here that according to recent experimental work 
(Trengove et af 1981) this method can be confidently used to determine thermal 
diffusion factors. 

In the simplified formulation of Slieker (1965) the fluid properties are assumed 
to be constant when evaluated at the mean temperature of Fleischmann and Jensen 
(1942). Therefore the maximum separation factor and the optimum pressure are 
given by (16) and (17) if we use for T, this reference temperature and, respectively, 
take for q, and p, ,  40 and PO. To check the validity of this formulation we have 
calculated from (6), (7), (16) and (17) exact q. and p s  values for the Lennard-Jones 
(12-6) model with T2/T1 = 3, TT = 5 and r l / r z  = 5, 10 and 40. Deviations betwe'en 
these values and the corresponding ones for qo and p o  as high as 50% are obtained, 
indicating that the Slieker formulation can be used only for rough estimations. 
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